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Multitasking is fact of life for most embedded systems developers. We have little choice in the 
matter: few systems these days are so simple that you can dispense with using a task model in 
your design. Once you've decided to use multitasking, however, the choices start to appear. But 
which approach to multitasking will you choose?  
 
We have three basic methods of multitasking. The simplest is the round-robin scheme, a 
variation of a loop where each task has its turn and runs until finished. Slightly more 
sophisticated is the time-slice approach, where each task is allowed to run for a fixed time and is 
then suspended until the next cycle. Finally, we have the preemptive model, where the most 
important ready task runs until it is finished or preempted by a more important task. The first two 
methods repetitively cycle through all of the tasks. The third method does not.  
 
Which of these methods is best for a real-time system? I think the preemptive-model method is 
the best. Other articles have discussed the first two methods under the heading of "cooperative" 
multitasking. (See "Heavyweight Tasking," by Philip Koopman, Jr., Embedded Systems 
Programming, April 1990, pp. 42-52 and "Cooperative Multitasking," by Jack Woehr, Embedded 
Systems Programming, April 1990, pp. 54-61.)  
 
Real-time systems are preemptive by their very nature, which is why they use interrupts 
extensively. For simple systems, it is often possible to do all processing using interrupt-service 
routines (ISRs). This approach is the easiest. However, it is not usually sufficient-especially 
since new designs are increasing in complexity.  
 
Most systems have a mix of frequent interrupts, which require little processing, and less frequent 
interrupts, which require more processing. Since external events are usually asynchronous, all 
interrupts caused by them may occur at once. This situation causes a temporary overload of the 
processor and can cause subsequent, frequent interrupts to be missed - resulting in system 
malfunction. The problem is often solved by moving extensive processing into background 
functions. (For purposes of this article, we define background to be code that is not highly time-
critical and that usually runs with interrupts enabled. We define foreground as highly time-
critical code that usually runs with interrupts disabled.) Using this approach, ISR code is held to 
a minimum so that interrupts can be reenabled as soon as possible. (ISRs are usually 
nonreentrant for speed, so it is customary to not allow them to be interrupted.)  
 
Moving extensive processing into the background solves a major problem for most systems. 
However, it introduces the question of how to communicate between the foreground ISRs and 
the background functions. A common approach is for each ISR to set a flag when a background 
service is required. These service flags are monitored by a background code loop (variously 
called an idle loop or a super loop.) The background loop calls functions as their flags are set. 
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This approach is basically round-robin scheduling. It works fine if each function has adequate 
time to complete before being called again. Background functions are usually non-reentrant 
(again, for speed. They can also use non-sharable resources). Furthermore, some functions may 
need to complete within specified time constraints. These factors often lead to the problem we 
encountered in the foreground -- a temporary processor overload resulting in malfunction.  
 
The usual solution to processor overloading is to modify the loop so that some flags are tested 
more often than others. Also, long functions may be broken into fragments so that more urgent 
functions can run in between the fragments. These performance problems typically occur late in 
a project and are solved by quick fixes. Under such circumstances. Well-crafted code 
degenerates into "spaghetti code." Spaghetti code is code that has lost its integrity. It has become 
subverted by a set of requirements and has lost its clean, simple structure. Worse, it is not easily 
extensible and may be understood only by its originator. Unfortunately, this type of subversion is 
common. (For the past generation of microprocessor software, it may be the norm!)  
 
It is my theory that spaghetti code arises from a mismatch between foreground and background. 
The foreground is characterized by two important attributes: priority and preemption. A round-
robin or time-sliced background lack these attributes, and that is where the problem lies. Clumsy 
attempts to fix the background lead to spaghetti code.  
 
Preemption is a natural phenomenon -- as are priorities. We even run our own lives this way. For 
example, you are programming and the phone rings. What do you do? You answer it! We are so 
accustomed to such interruptions, we scarcely pay any attention to them. Software that allows 
preemption is bound to handle real-world events better. Here again, programmers who respond 
to interrupts and crises are more effective than programmers who refuse to be interrupted.  
 
Let's look at how a real-time, multitasking kernel averts the dreaded Spaghetti Software 
Syndrome. To start with, we have the concept of a task. A task is not code; it is a portion of 
work. In software, the task is translated into a task-control block (TCB), which contains 
information about the task, a stack for the task's local variables, and associated code, which often 
is reentrant so that it can be used by other tasks. A TCB typically includes a forward link, a 
backward link, a priority, a control block type, a return value, a stack handler, a stack pointer, 
and a function pointer. Forward and backward links are pointers used to link the task into various 
queues (only the pointers change; nothing really moves). The fun field points at the code used by 
the task. (Code is just a list of instructions telling the processor how to accomplish the task.) The 
other fields are not important here. Every kernel has its own TCB format, this one is just an 
example. (This and subsequent examples are based upon smx, a simple multitasking executive.)  
 
Interstate Transfers  
The next topic to consider is what task states are allowed.  
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Figure 1 is an example of task states and task-state transitions. This diagram is representative of 
most kernels. NULL means that the task has not been created yet or has been deleted. WAIT 
means it is waiting for an event. READY means it is ready to run. RUN means it is actually 
running. In a single-processor system, only one task at a time can be in the RUN state. Most of 
the time, this task will be the highest-priority task that is ready to run.  
 
If you have ever watched streams of ants, you have some idea of how multitasking systems work 
-- organized chaos! Individual ants run into other ants going the opposite direction. They get 
turned around, and go off in the wrong direction. Other ants go off in circles. Yet, somehow, the 
job of bringing food home to the nest gets done.  
 
Like an ant, a task steadfastly pursues its own little mission. As with an ant colony, the 
mechanism for overall system control is not obvious to an observer. It is indeed a minor miracle 
resulting from the following:  
 

• Usually running the highest priority task when it is ready  
• Communication from task to task  
• Communication from foreground service routines to tasks.  

 
To use the first scheme, the scheduler (which is part of the kernel) must occasionally gain 
control. We have two mechanisms to accomplish this task. The first is when the current task (the 
one in the RUN state) makes a kernel call. Following such a call, control passes to the scheduler. 
The kernel call may have suspended the current task (put it into the WAIT state), caused a higher 
priority task to become ready, or neither. The scheduler sorts this information and decides 
whether to continue the current task or run another.  
 
The second way the scheduler gains control is when an interrupt occurs. Following an ISR, 
control usually passes to the scheduler. The ISR may have caused a higher priority task to 
become ready. Again, the scheduler decides what to do. It gives the system an adaptive nature 
determined by priorities, which is a valuable characteristic because it makes the system behave 
in a reasonable manner (the most important task runs first). It also makes the system relatively 
easy to design and tune by changing priorities.  
 



 4

The remaining two means of system control involve objects provided by the kernel for intertask 
communication. Most kernels provide semaphores and message exchanges (also called "mail 
boxes"). These mail boxes are usable from foreground service routines as well as from tasks.  
 
Some tasks and service routines send messages to exchanges. Other tasks receive messages from 
exchanges and process them. If an exchange has no messages, a task attempting to receive a 
message will be suspended on the exchange and enter the WAIT state. The next-highest priority 
task will then run. When a message is sent to the exchange, the waiting task will be resumed and 
enter the READY state. If this task is of higher priority than the current task, which could be any 
task at this time, it will run. Messages may pile up at exchanges during periods of peak activity. 
This situation is not a problem. These messages form a work stream similar to units on an 
assembly line moving from one workstation (task) to the next.  
 
Semaphores operate in a similar manner, except that no messages are involved. A task may wait 
at a semaphore. Another task may signal the semaphore causing the waiting task to resume. 
Semaphores provide a means for one task to jog another.  
 

Tasking in Practice 
 
So much for theory. What does the code look like? It's pretty straightforward. To create a task we 
simply give the task a name and assign it code, such as a C function, and a priority:  
 
        TCB_PTR atask; 
        atask = create_task( atask_main, PRIORITY ); 
 
atask is a pointer to the task's TCB.  
 
From here on, atask identifies the task. For example, to put the task into the ready queue and 
make it ready to run:  
 
        start( atask ); 
 
The create_task() and start() are kernel calls. The task's code is a C function:  
 
        void atask_main( void ) 
        { 
        /*initialization */ 
        /* operation */ 
        } 
 
The following code could be reentrant and shared by many tasks:  
 
        TCB_PTR task[N] 
        for {i = 0; i < N; i++} 
             task[i] = create_task( atask_main, PRIORITY ); 
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These tasks, task[0], task[1],...,task[N], share the atask_main code. How do tasks exchange 
messages? First, create a message:  
 
        MCB_PTR amsg; 
        amsg = create_nmsg( 100 ); 
 
This code takes 100 bytes from the near heap and allocates a message control block (MCB) to 
handle it. We need an exchange to send the message to:  
 
        XCHG_PTR anxchg; 
        anxchg = create_xchg( NXCHG, 0, 0 ); 
 
This code creates a normal exchange with one task level and one message level. Now, taskA 
loads information into the message and sends it to anxchg:  
 
        void taskA_main() 
        { 
        /* fill amsg */ 
        send( amsg, anxchg ); 
        } 
 
Then taskB receives the message and processes it:  
 
        void taskB_main() 
        { 
        MCB_PTR m; 
        if (m = receive( anxchg, SEC )) 
             /* process m */ 
        else /* alternative action */ 
        } 
 
This task waits up to one second for a message to arrive at anxchg. If no message arrives, then it 
takes alternative action.  
 
The main problem I've observed in newcomers to preemptive multitasking is their tendency to 
overly control. For example, time-slicing seems to be a security blanket that is hard to give up. 
Firing off signals to semaphores, where other tasks may or may not be waiting, seems a difficult 
act of faith. Sending messages blindly to exchanges seems overly adventuresome. A strong need 
for determinism and sequential ordering exists. Then comes the dawn -- the programmer realizes 
that complex, real systems aren't very deterministic. They are best controlled by nonsequential 
means! Once you have cleared these conceptual barriers you have a fascinating opportunity to 
design real-time systems in a new and, hopefully, better way.  
 
Ralph Moore is a veteran of 15 years in microprocessor applications and the architect of smx. He is President of 
Micro Digital, Inc.  
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